1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//! Parsing and serialization helpers.
pub use reader::{ExpectedSize, Reader};
pub use writer::Writer;

mod reader {
    use std::convert::TryFrom;

    type Result<T> = std::result::Result<T, InsufficientBuffer>;

    /// Buffer reader
    pub struct Reader<'a>(&'a [u8]);
    #[derive(Debug)]
    /// Error marking try to read more than buffer size.
    pub struct InsufficientBuffer;
    /// Error that is returned when expected size bounds are not met. Read more in `Reader::read` docs.
    pub struct ReadError;

    /// Expected by user size of buffer.
    pub enum ExpectedSize {
        /// `Reader` must have exact size, equal to associated value
        Exact(usize),
        /// `Reader` length must be not less than associated value
        NotLessThan(usize),
    }

    impl<'a> Reader<'a> {
        /// Instantiates `Reader`.
        pub fn new(data: &'a [u8]) -> Self {
            Reader(data)
        }

        /// Reads bytes in accordance to logic implemented in `job`.
        ///
        /// If `expected_size` check fails (i.e. readers size does not apply to expected condition), `ReaderError` is returned.
        ///
        /// # Panics
        ///
        /// `job` closure is used to encapsulate multiple reads from `Reader`. Data reads in `job` must be infallible: they should coordinate with the
        /// expected size. So if too much than could be or less than stated in `expected_size` was read, it finishes with panic.
        pub fn read<R, F: FnOnce(&mut Self) -> Result<R>>(&mut self, expected_size: ExpectedSize, job: F) -> std::result::Result<R, ReadError> {
            let len_before_read = self.len();
            match expected_size {
                ExpectedSize::Exact(count) => {
                    if self.len() != count {
                        return Err(ReadError);
                    }
                    let res = job(self).expect("reading data more than could be");
                    assert_eq!(self.len(), len_before_read - count, "reading data less than stated");
                    Ok(res)
                }
                ExpectedSize::NotLessThan(count) => {
                    if self.len() < count {
                        return Err(ReadError);
                    }
                    let res = job(self).expect("reading data more than could be");
                    assert!(len_before_read - count >= self.len(), "reading data less than stated");
                    Ok(res)
                }
            }
        }

        /// Reads u8
        pub fn read_u8(&mut self) -> Result<u8> {
            let bytes = self.read_slice(1)?;
            Ok(bytes[0])
        }

        /// Reads big endian u16
        pub fn read_u16_be(&mut self) -> Result<u16> {
            let bytes = self.read_slice(2)?;
            let bytes_array = <[u8; 2]>::try_from(bytes).expect("invalid slice size");
            Ok(u16::from_be_bytes(bytes_array))
        }

        /// Reads big endian u32
        pub fn read_u32_be(&mut self) -> Result<u32> {
            let bytes = self.read_slice(4)?;
            let bytes_array = <[u8; 4]>::try_from(bytes).expect("invalid slice size");
            Ok(u32::from_be_bytes(bytes_array))
        }

        /// Reads big endian u64
        pub fn read_u64_be(&mut self) -> Result<u64> {
            let bytes = self.read_slice(8)?;
            let bytes_array = <[u8; 8]>::try_from(bytes).expect("invalid slice size");
            Ok(u64::from_be_bytes(bytes_array))
        }

        /// Reads `[u8; 32]` array.
        pub fn read_array_32(&mut self) -> Result<[u8; 32]> {
            let bytes_32_slice = self.read_slice(32)?;
            let bytes_32_array = <[u8; 32]>::try_from(bytes_32_slice).expect("invalid slice size");
            Ok(bytes_32_array)
        }

        /// Peeks remainder without mutating readers state
        pub fn peek_remainder(&self) -> &'a [u8] {
            self.0
        }

        /// Returns remainder mutating readers state.
        pub fn read_remainder(&mut self) -> &'a [u8] {
            self.read_slice(self.len()).expect("attempting to read data more than slice have")
        }

        /// Skips `count` amount of data.
        pub fn skip(&mut self, count: usize) -> Result<()> {
            let _ = self.read_slice(count)?;
            Ok(())
        }

        /// Reads `count` values.
        pub fn read_slice(&mut self, count: usize) -> Result<&'a [u8]> {
            if self.len() < count {
                return Err(InsufficientBuffer);
            }
            let (ret_bytes, rest_bytes) = self.0.split_at(count);
            self.0 = rest_bytes;
            Ok(ret_bytes)
        }

        pub fn is_empty(&self) -> bool {
            self.len() == 0
        }

        fn len(&self) -> usize {
            self.0.len()
        }
    }

    #[cfg(test)]
    mod tests {
        use super::*;

        #[test]
        fn test_reader() {
            let bytes = (0..64).collect::<Vec<u8>>();
            let mut reader = Reader::new(&bytes);

            let num8 = reader.read_u8().expect("bytes are read out");
            assert_eq!(num8, 0);
            let num16 = reader.read_u16_be().expect("bytes are read out");
            assert_eq!(num16.to_be_bytes(), [1, 2]);
            let num32 = reader.read_u32_be().expect("bytes are read out");
            assert_eq!(num32.to_be_bytes(), [3, 4, 5, 6]);
            let num64 = reader.read_u64_be().expect("bytes are read out");
            assert_eq!(num64.to_be_bytes(), [7, 8, 9, 10, 11, 12, 13, 14]);
            let array_32 = reader.read_array_32().expect("bytes are read out");
            assert_eq!(array_32.to_vec(), (15..47).collect::<Vec<u8>>());
            // checking read out of bounds
            assert!(reader.read_slice(20).is_err());
            // reading last bytes
            reader.read_slice(17).expect("bytes are read out");
            assert_eq!(reader.len(), 0);
        }

        #[test]
        fn test_remainder() {
            let bytes = (0..32).collect::<Vec<u8>>();
            let mut reader = Reader::new(&bytes);

            assert_eq!(&bytes, &reader.peek_remainder());
            let _ = reader.read_u16_be();
            assert_eq!(&bytes[2..], reader.peek_remainder());
            let _ = reader.read_u16_be();
            assert_eq!(&bytes[4..], reader.read_remainder());
            assert_eq!(0, reader.len())
        }

        #[test]
        fn test_custom_read() {
            let bytes = vec![0; 32];
            let mut reader = Reader::new(&bytes);

            assert!(reader.read(ExpectedSize::Exact(35), |_| Ok(())).is_err());
            assert!(reader.read(ExpectedSize::NotLessThan(35), |_| Ok(())).is_err());
        }

        #[test]
        #[should_panic]
        fn test_read_more_for_exact() {
            let bytes = vec![0; 32];
            let mut reader = Reader::new(&bytes);
            // panics: trying to read more than stated
            let _ = reader.read(ExpectedSize::Exact(32), |r| {
                let invalid_res = r.read_slice(35)?;
                Ok(invalid_res)
            });
        }

        #[test]
        #[should_panic]
        fn test_read_less_for_exact() {
            let bytes = vec![0; 32];
            let mut reader = Reader::new(&bytes);
            // panics: trying to read less than stated
            let _ = reader.read(ExpectedSize::Exact(32), |r| {
                let invalid_res = r.read_slice(20)?;
                Ok(invalid_res)
            });
        }

        #[test]
        #[should_panic]
        fn test_read_more_for_not_less_than() {
            let bytes = vec![0; 32];
            let mut reader = Reader::new(&bytes);
            // panics: trying to read more than stated
            let _ = reader.read(ExpectedSize::NotLessThan(32), |r| {
                let invalid_res = r.read_slice(35)?;
                Ok(invalid_res)
            });
        }

        #[test]
        #[should_panic]
        fn test_read_less_for_not_less_than() {
            let bytes = vec![0; 32];
            let mut reader = Reader::new(&bytes);
            // panics: trying to read less than stated
            let _ = reader.read(ExpectedSize::NotLessThan(32), |r| {
                let invalid_res = r.read_slice(20)?;
                Ok(invalid_res)
            });
        }
    }
}

mod writer {
    /// Buffer writer. Wrapper over `Vec<u8`.
    pub struct Writer(Vec<u8>);

    impl Writer {
        /// Instantiates new writer.
        pub fn new() -> Self {
            Self(Vec::new())
        }

        /// Instantiates writer with provided `capacity`.
        pub fn with_capacity(capacity: usize) -> Self {
            Self(Vec::with_capacity(capacity))
        }

        /// Converts `Writer` into `Vec<u8>`.
        pub fn into_vec(self) -> Vec<u8> {
            self.0
        }

        /// Writes u8 to buffer.
        pub fn write_u8(&mut self, data: u8) {
            self.write_slice(&[data]);
        }

        /// Writes big endian u16 to buffer.
        pub fn write_u16_be(&mut self, data: u16) {
            self.write_slice(&data.to_be_bytes());
        }

        /// Writes big endian u32 to buffer.
        pub fn write_u32_be(&mut self, data: u32) {
            self.write_slice(&data.to_be_bytes())
        }

        /// Writes big endian 64 to buffer.
        pub fn write_u64_be(&mut self, data: u64) {
            self.write_slice(&data.to_be_bytes());
        }

        /// Writes slice to buffer.
        pub fn write_slice(&mut self, data: &[u8]) {
            self.0.extend_from_slice(data);
        }
    }

    #[cfg(test)]
    mod tests {
        use super::*;

        #[test]
        fn test_writer() {
            let initial_capacity = 64;
            let mut writer = Writer::with_capacity(64);

            writer.write_u8(0);
            writer.write_u16_be(258);
            writer.write_u32_be(50595078);
            writer.write_u64_be(506664896818842894);

            let data = (15..64).collect::<Vec<u8>>();
            writer.write_slice(&data);

            let bytes = writer.into_vec();
            assert_eq!(bytes.len(), initial_capacity);
            assert_eq!(bytes, (0..64).collect::<Vec<u8>>());
        }
    }
}